Search results for "Cauchy's integral theorem"
showing 6 items of 6 documents
The Cauchy problem for linear growth functionals
2003
In this paper we are interested in the Cauchy problem $$ \left\{ \begin{gathered} \frac{{\partial u}}{{\partial t}} = div a (x, Du) in Q = (0,\infty ) x {\mathbb{R}^{{N }}} \hfill \\ u (0,x) = {u_{0}}(x) in x \in {\mathbb{R}^{N}}, \hfill \\ \end{gathered} \right. $$ (1.1) where \( {u_{0}} \in L_{{loc}}^{1}({\mathbb{R}^{N}}) \) and \( a(x,\xi ) = {\nabla _{\xi }}f(x,\xi ),f:{\mathbb{R}^{N}}x {\mathbb{R}^{N}} \to \mathbb{R} \)being a function with linear growth as ‖ξ‖ satisfying some additional assumptions we shall precise below. An example of function f(x, ξ) covered by our results is the nonparametric area integrand \( f(x,\xi ) = \sqrt {{1 + {{\left\| \xi \right\|}^{2}}}} \); in this case …
Principal Values of Cauchy Integrals, Rectifiable Measures and Sets
1991
The extensive studies started by A. P. Calderon in the sixties and continued by many authors up today have revealed that the Cauchy integrals $$ {C_{\Gamma }}f(z) = \int_{\Gamma } {\frac{{f\left( \zeta \right)d\zeta }}{{\zeta - z}}} $$ behave very well on sufficiently regular, not necessarily smooth, curves F, see [CCFJR], [D] and [MT].
A Note on Riesz Bases of Eigenvectors of Certain Holomorphic Operator-Functions
2001
Abstract Operator-valued functions of the form A (λ) ≔ A − λ + Q(λ) with λ ↦ Q(λ)(A − μ)− 1 compact-valued and holomorphic on certain domains Ω ⊂ C are considered in separable Hilbert space. Assuming that the resolvent of A is compact, its eigenvalues are simple and the corresponding eigenvectors form a Riesz basis for H of finite defect, it is shown that under certain growth conditions on ‖Q(λ)(A − λ)− 1‖ the eigenvectors of A corresponding to a part of its spectrum also form a Riesz basis of finite defect. Applications are given to operator-valued functions of the form A (λ) = A − λ + B(λ − D)− 1C and to spectral problems in L2(0, 1) of the form −f″(x) + p(x, λ)f′(x) + q(x, λ)f(x) = λf(x…
Radó-Kneser-Choquet Theorem for simply connected domains (p-harmonic setting)
2018
A remarkable result known as Rad´o-Kneser-Choquet theorem asserts that the harmonic extension of a homeomorphism of the boundary of a Jordan domain ⌦ ⇢ R2 onto the boundary of a convex domain Q ⇢ R2 takes ⌦ di↵eomorphically onto Q . Numerous extensions of this result for linear and nonlinear elliptic PDEs are known, but only when ⌦ is a Jordan domain or, if not, under additional assumptions on the boundary map. On the other hand, the newly developed theory of Sobolev mappings between Euclidean domains and Riemannian manifolds demands to extend this theorem to the setting on simply connected domains. This is the primary goal of our article. The class of the p -harmonic equations is wide enou…
Regularity of solutions of cauchy problems with smooth cauchy data
1988
Integral holomorphic functions
2004
We define the class of integral holomorphic functions over Banach spaces; these are functions admitting an integral representation akin to the Cauchy integral formula, and are related to integral polynomials. After studying various properties of these functions, Banach and Frechet spaces of integral holomorphic functions are defined, and several aspects investigated: duality, Taylor series approximation, biduality and reflexivity. In this paper we define and study a class of holomorphic functions over infinite- dimensional Banach spaces admitting integral representation. Our purpose, and the motivation for our definition, are two-fold: we wish to obtain an integral repre- sentation formula …