Search results for "Cauchy's integral theorem"

showing 6 items of 6 documents

The Cauchy problem for linear growth functionals

2003

In this paper we are interested in the Cauchy problem $$ \left\{ \begin{gathered} \frac{{\partial u}}{{\partial t}} = div a (x, Du) in Q = (0,\infty ) x {\mathbb{R}^{{N }}} \hfill \\ u (0,x) = {u_{0}}(x) in x \in {\mathbb{R}^{N}}, \hfill \\ \end{gathered} \right. $$ (1.1) where \( {u_{0}} \in L_{{loc}}^{1}({\mathbb{R}^{N}}) \) and \( a(x,\xi ) = {\nabla _{\xi }}f(x,\xi ),f:{\mathbb{R}^{N}}x {\mathbb{R}^{N}} \to \mathbb{R} \)being a function with linear growth as ‖ξ‖ satisfying some additional assumptions we shall precise below. An example of function f(x, ξ) covered by our results is the nonparametric area integrand \( f(x,\xi ) = \sqrt {{1 + {{\left\| \xi \right\|}^{2}}}} \); in this case …

CombinatoricsCauchy problemCauchy's convergence testDomain (ring theory)UniquenessNabla symbolCauchy's integral theoremCauchy's integral formulaMathematicsCauchy product
researchProduct

Principal Values of Cauchy Integrals, Rectifiable Measures and Sets

1991

The extensive studies started by A. P. Calderon in the sixties and continued by many authors up today have revealed that the Cauchy integrals $$ {C_{\Gamma }}f(z) = \int_{\Gamma } {\frac{{f\left( \zeta \right)d\zeta }}{{\zeta - z}}} $$ behave very well on sufficiently regular, not necessarily smooth, curves F, see [CCFJR], [D] and [MT].

Pure mathematicsMathematics::Number TheoryResidue theoremPrincipal valueCauchy principal valueCauchy distributionCauchy's integral theoremMathematics
researchProduct

A Note on Riesz Bases of Eigenvectors of Certain Holomorphic Operator-Functions

2001

Abstract Operator-valued functions of the form A (λ) ≔ A − λ + Q(λ) with λ ↦ Q(λ)(A − μ)− 1 compact-valued and holomorphic on certain domains Ω ⊂  C are considered in separable Hilbert space. Assuming that the resolvent of A is compact, its eigenvalues are simple and the corresponding eigenvectors form a Riesz basis for H of finite defect, it is shown that under certain growth conditions on ‖Q(λ)(A − λ)− 1‖ the eigenvectors of A corresponding to a part of its spectrum also form a Riesz basis of finite defect. Applications are given to operator-valued functions of the form A (λ) = A − λ + B(λ − D)− 1C and to spectral problems in L2(0, 1) of the form −f″(x) + p(x, λ)f′(x) + q(x, λ)f(x) = λf(x…

Dirichlet problemPure mathematicsApplied MathematicsMathematical analysisHolomorphic functionHilbert spaceeigenvectorsoperator-functionRiesz basisSeparable spacesymbols.namesakeDirichlet boundary conditionsymbolsCauchy's integral theoremAnalysisEigenvalues and eigenvectorsMathematicsResolventJournal of Mathematical Analysis and Applications
researchProduct

Radó-Kneser-Choquet Theorem for simply connected domains (p-harmonic setting)

2018

A remarkable result known as Rad´o-Kneser-Choquet theorem asserts that the harmonic extension of a homeomorphism of the boundary of a Jordan domain ⌦ ⇢ R2 onto the boundary of a convex domain Q ⇢ R2 takes ⌦ di↵eomorphically onto Q . Numerous extensions of this result for linear and nonlinear elliptic PDEs are known, but only when ⌦ is a Jordan domain or, if not, under additional assumptions on the boundary map. On the other hand, the newly developed theory of Sobolev mappings between Euclidean domains and Riemannian manifolds demands to extend this theorem to the setting on simply connected domains. This is the primary goal of our article. The class of the p -harmonic equations is wide enou…

Discrete mathematicsApplied MathematicsGeneral Mathematics010102 general mathematicsta111Semi-locally simply connectedHarmonic (mathematics)01 natural sciences010101 applied mathematicsfunktioteoriap-harmonic equationSimply connected spaceharmonic mappingsmonotone mappings0101 mathematicsCauchy's integral theoremfunktionaalianalyysiSimply connected at infinityMathematicsTransactions of the American Mathematical Society
researchProduct

Regularity of solutions of cauchy problems with smooth cauchy data

1988

Cauchy problemPure mathematicsCauchy's convergence testResidue theoremCauchy principal valueCauchy boundary conditionCauchy's integral theoremCauchy's integral formulaCauchy productMathematics
researchProduct

Integral holomorphic functions

2004

We define the class of integral holomorphic functions over Banach spaces; these are functions admitting an integral representation akin to the Cauchy integral formula, and are related to integral polynomials. After studying various properties of these functions, Banach and Frechet spaces of integral holomorphic functions are defined, and several aspects investigated: duality, Taylor series approximation, biduality and reflexivity. In this paper we define and study a class of holomorphic functions over infinite- dimensional Banach spaces admitting integral representation. Our purpose, and the motivation for our definition, are two-fold: we wish to obtain an integral repre- sentation formula …

Mathematics::Functional AnalysisPure mathematicsGeneral MathematicsHolomorphic functional calculusMathematical analysisHolomorphic functionAnalyticity of holomorphic functionsDaniell integralCauchy's integral theoremInfinite-dimensional holomorphyIdentity theoremCauchy's integral formulaMathematicsStudia Mathematica
researchProduct